On Negatively Curved Finsler Manifolds of Scalar Curvature

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Negatively Curved Finsler Manifolds of Scalar Curvature

In this paper, we prove a global rigidity theorem for negatively curved Finsler metrics on a compact manifold of dimension n ≥ 3. We show that for such a Finsler manifold, if the flag curvature is a scalar function on the tangent bundle, then the Finsler metric is of Randers type. We also study the case when the Finsler metric is locally projectively flat.

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Non-negatively Curved Kähler Manifolds with Average Quadratic Curvature Decay

Let (M, g) be a complete non compact Kähler manifold with non-negative and bounded holomorphic bisectional curvature. Extending our techniques developed in [8], we prove that the universal cover M̃ of M is biholomorphic to Cn provided either that (M, g) has average quadratic curvature decay, or M supports an eternal solution to the Kähler-Ricci flow with non-negative and uniformly bounded holomo...

متن کامل

Negatively Ricci Curved Manifolds

In this paper we announce the following result: “Every manifold of dimension ≥ 3 admits a complete negatively Ricci curved metric.” Furthermore we describe some sharper results and sketch proofs.

متن کامل

Existence of closed geodesics on positively curved Finsler manifolds

For non-reversible Finsler metrics of positive flag curvature on spheres and projective spaces we present results about the number and the length of closed geodesics and about their stability properties. 2000 MSC classification: 53C22; 53C60; 58E10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Mathematical Bulletin

سال: 2005

ISSN: 0008-4395,1496-4287

DOI: 10.4153/cmb-2005-010-3